World Oil[®] HPHI DRILLING, COMPLETIONS & PRODUCTION CONFERENCE

September 26-27, 2017

Norris Conference Centers - CityCentre, Houston, Texas

HPHTConference.com

A Case Study of a New Emulsifier Used in a High Density Non-aqueous Drilling Fluid in Asia

Nancy Zhou*, Fuchen Liu, Da Yin, Jiancheng Li, Meng Lu *Sr. Research Scientist, CNPC USA

Outline

- Introduction
- Laboratory development of the emulsifier
- Field trial lab qualification of the emulsifier
- Field trial results
- Conclusion

HTHP Wells Locations

>10

Drilling Fluid Challenges in Tarim Basin

- High formation pressure with deep salt layer ---Calls for Ultra-high density drilling fluids (over MW 2.4 (20ppg), killing fluid density up to 2.8 (23ppg))
- Gypsum formation with mudstone and even potential salt-water bed---Calls for NADF
- Encounter borehole stability, stuck pipe, high pressure brine influx and downhole losses

• Project Target

✓ Emulsifier for NADF, 220-250°C
✓ MW up to 2.4 S.G.

✓ ES over 600V

- uHT emulsifiers are patent pending products.
- Selectively crosslinking structures contribute the temperature stability.
- Main raw materials are organic food grade vegetable oils, such as corn oil, soybean oil, and Castor oil, etc.

Field Trial Parameters

	Typical properties							
Well	Density,			HTHP,	HTHP F.L			
section	g/cm3	PV, mPa.S	ES <i>,</i> V	F.L. mL	Cake, mm	10'' gel	10' gel	
Salt Layer	2.20-2.40	45-85	>=400	<=15	<=12	1~4	5~12	
Production								
Layer	1.82-1.95	45-85	>=400	<=10	<=10	1~3	4~10	

Field Trial, Tarim Field Lab

	Density,			HTHP,	HTHP F.L		
Mud	g/cm3	PV, mPa.S	ES <i>,</i> V	F.L. mL	Cake, mm	10'' gel	10' gel
20160628	2.41	90	1115	3	6	2	5
20160628C	1.9	53	910	2.8	5.5	3	4.5

	Density,			HTHP,	HTHP F.L		
Mud	g/cm3	PV, mPa.S	ES, V	F.L. mL	Cake, mm	10'' gel	10' gel
20160701-1	2.4	75	1087	3.8	5	4	5.5
20160701-2	1.8	33	837	5.4	4	3	4.5

• Trial section DF requirement

Depth (m)	Density (g/cm ³)	OWR	ES (V)	HTHP FL (mL)	YP (Pa)	Gel (10s/10m), Pa	LD Solid %	Ex. Lime (kg/m ³)
412~ 3002	$2.40 \sim 2.50$	80:20~ 90:10	≥400	≤ 5	5~20	$3\sim 8/5\sim 16$	≤9	≥ 5

Field Trial ES vs Depth Electrical Stability, V ------Depth, m

Field Trial HTHP Fluid Loss HTHP FL Cake, mm FL Cake Thickness, mm HTHP FL Vol, mL FL Volume, ml 1659 1804 3 13 8 Depth, m

Conclusion

• High performance emulsifiers were successfully used (467 to 3118 meters)

Acknowledgement

- CNPC management for approving the presentation
- CNPC for funding this project
- Songbing Yan, Jose Javier Alvarez, Stephanie Yu, Steven Vaughan, and Bruno Hoxha, Ron Powell

