World Oil[®] HPHI DRILLING, COMPLETIONS & PRODUCTION CONFERENCE

September 26-27, 2017

Norris Conference Centers - CityCentre, Houston, Texas

HPHTConference.com

Predictive Models to identify High-Pressure, High-Temperature Zones in the Gulf of Mexico

Waqi Alam, Ph.D. President Tetrahedron, Inc.

PROJECT SPONSOR

The study was conducted under a contract funded by The Bureau of Safety and Environmental Enforcement (BSEE) of the U.S. Department of Interior (Dol)

PURPOSE OF THE STUDY

- Develop predictive models to estimate bottom hole pressures (BHP)in the GOM at water depths:
 - <1,000 ft Shallow water
 - ≥1,000 ft Deep water
- Develop predictive models to estimate bottom hole temperatures (BHT) in the GOM at water depths :
 - 0 500 ft
 - 500 1,000 ft
 - 1,000 2,000 ft
 - 2,000 3,000 ft
 - 3,000 4,000 ft
 - ≥ 4,000 ft

WHY MODELS FOR DIFFERENT WATER DEPTHS

- Pressure increases with water depth at a rate similar to formation depth (0.44 psi/ft and 0.46 psi/ft, respectively) but they are not the same. Therefore, 2 water depths were selected for predicting bottom hole pressures.
- Temperature decreases with water depth, but it increases with formation depth – an inverse relationship. Therefore, several bands of water depths were selected for predicting bottom hole temperatures.

DEFINITIONS

- High Pressure: Pressure rating >15,000 psig.
- High Temperature: Temperature rating >350F°.
- BSEE defines deep water as water depth ≥1,000 ft.
- R²: Statistical measure of how close the actual data is to the regression line.

DEFINITIONS

WHY PREDICT HPHT?

- HPHT zones are becoming common due to deep drilling.
- HPHT information necessary for well planning, casing design, mud program, well control, and health and safety.
- HPHT data can assist in determining reservoir connectivity, fluid contacts, and lateral and vertical seals.

DATA SOURCE

- Data provided by BSEE for Outer Continental Shelf
- Data consisted of:
 - Old data set (2000 2006) and
 - New data set (2006 2016)

DATA COVERAGE

Gulf of Mexico Outer Continental Shelf

PRESSURE AND TEMPERATURE DATA

BHP calculated from mud weight data: BHP = 0.052 x TVDss x Mud Weight (lbs/gal)

BHT = Measured at the bottom hole

	Water Depth <1000 ft	Water Depth ≥1000 ft	
BHP	3,818	1,457	
BHT ≥100°F	2,040	857	

HIGH PRESSURE DATA COUNT

HIGH TEMPERATURE DATA COUNT

BHP vs TVDss (Water Depths ≥1000 ft and <1000 ft)

— Poly. (All Data Water Depth ≥1000 Ft)

----- Poly. (All Data Wayer Depth <1000 Ft)

BHT vs TVDss (Water Depths ≥1000 ft and <1000 ft)

BHT vs TVDss (Water Depths 0-500 ft and 500-1000 ft)

BHT Degrees F

----- Linear (All Data Water Depth 500-1000 Ft)

BHT vs TVDss (Water Depths 1000-2000 ft and 2000-3000 ft)

BHT Degrees F

------ Linear (All Data Water Depth 2000-3000 Ft)

BHT vs TVDss (Water Depths 3000-4000 ft and >4000 ft)

BHT vs BHP

CONCLUSIONS

Plot	Water Depth	Regression Equation	R ² Value
BHP v TVDss	<1,000 ft	Y=2E-05x ² +0.5645x-502.31	0.8970
BHP v TVDss	≥1,000 ft	$Y = 5E - 06x^2 + 05928x$	0.9083
BHT v TVDss	<1,000 ft	Y=0.0121x+70	0.7778
BHT v TVDss	≥1,000 ft	Y=0.0053x+70	0.5282
BHT v TVDss	0 - 500 ft	Y=0.0116x+77.618	0.7984
BHT v TVDss	500 - 1,000 ft	Y=0.0063x+103.08	0.5125
BHT v TVDss	1,000 - 2,000 ft	Y=0.0062x+87.941	0.5237
BHT v TVDss	2,000 - 3,000 ft	Y=0.0063x+65.026	0.7359
BHT v TVDss	3,000 - 4,000 ft	Y=0.0052x+73.286	0.7049
BHT v TVDss	≥4,000 ft	Y=0.0058x+50.486	0.6015
BHT v BHP	<1,000 ft	Y=0.0112x+111.95	0.7551
BHT v BHP	≥1,000 ft	Y=0.006x+90.929	0.5847

x = TVDss

CONCLUSIONS

- R² values, in some cases, are small as only one independent variable (depth) is used in the model.
- Other variables, such as geological and geochemical abnormalities, may also affect the dependent variables (pressure and temperature).
- If mudline were used as the datum for measuring depth, R² could be higher as it would eliminate the effect of water depth on bottom hole pressure and temperature.
- Mudline for different wells are at different depths introducing the challenge of dealing with different baselines for measuring depths, unlike MSL which is constant from which TVDss is measured.

CONCLUSIONS

- Hydrostatic pressure gradient at GOM is 0.465 psi/ft.
- Overpressure zones are identified with hydrostatic pressure gradients greater than 0.465 psi/ft.
- BSEE data can further be utilized to develop maps showing areas and zones that have high-pressure gradients that are a risk to health and safety, and to the environment.

