World Oil[®] HPHI DRILLING, COMPLETIONS & PRODUCTION CONFERENCE

September 26-27, 2017

Norris Conference Centers - CityCentre, Houston, Texas

HPHTConference.com

Simulation Study of Cement Isolation in Extreme Temperature Heavy Oil Development

Jiahang Han, Antonio Bottiglieri, Li Li Baker Hughes, a GE company

> World Oil[®] HPHT DRILLING, COMPLETIONS & PRODUCTION CONFERENCE

Outline

World Oil[®]

PLETIONS & PRODUCTION CONFERENCE

- Challenges & Objective
- Thermal-shock-resistant cement system
- Abaqus Finite Element Analysis (FEA)
- Simulation procedures: Thermal and Geo-mechanics coupling
- Case Histories
- Conclusion

Challenges

- Bare field (Orinoco Oil Belt), Venezuela
- Heavy oil recovery by in-situ combustion
- Lead cement sheath exposed to 392 F
- Tail cement sheath exposed to 1,202 F
- Extreme stresses for the cement sheathes

Objective:

- Zonal isolation at least along the caprock
- with a thermal shock resistant cement

Thermal-shock-resistant cement system

- Improve the *thermal-shock-resistance* by adding 50% high temperature stable minerals (selected alumosilicates)
- Enhance the "resilience" by increasing tensile strength & lowering Young's Moduli (with inorganic fibers)

After exposure to 800 F (SPE-134422): Conventional cement failed Modified API cement passed

World Oil

COMPLETIONS & PRODUCTION CONFERENCE

Abaqus Finite Element Analysis (FEA)

- Flexible tool for linear & non-linear element modeling
- Predicts the behavior of cement with different mechanical & thermal properties under various well-loading conditions
- Csg / cement / formation only quarter of the model is simulated
- Many parameters are required to conduct the FEA study
- Stresses from $\Delta p \& \Delta T$ can result in cement sheath failures
 - Debonding risk
 - tensile failure
 - shear failure

World Oil[®] HPHT DRILLING, COMPLETIONS & PRODUCTION CONFERENCE

Simulation procedure: Thermal and Geo-mechanics coupling

Simulations: Case 1 – Exchange Displacement fluid with Air

Simulations: Case 2 – Steam Injection to 567 F & 1,200 psi

Simulations: Case 3 – Air Injection at 1,200 psi & 1,202 F

Simulations: Case 4 – Shut down Air Injection

Conclusion

A 3D thermal and geomechanics coupling finite element analysis (FEA) model was built to analyze cement zonal isolation performance under in-situ status.

Thermal and pressure changes during drilling, completion, and in-situ combustion phase were calculated by the FEA model.

The model enables determination of tensile and/or shear failure occurrence, and where the failures occur according to the failure criteria.

The numerical simulation provides engineers a reliable and economic way of understanding cement zonal isolation performance.

