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Produced fluids 
enter pipeline at 

temp. 50-150°C and 
cools down along 

the pipeline

Production fluid is 
multiphasic by 

nature and prone to 
hydrate and wax 

formation

Result: 
Risk of plugging during 

turndown phases.

Typical hydrate/wax  
appearance temp.: 

25°C - 35°C

Typical ambient 
temperature at 

seabed:  -1°C to 10°C

Typical length of 
subsea oil pipeline: 

20km - 80km

Flow Assurance Problems for Subsea Pipelines

Hydrate plug Wax plug



Electrically Trace Heated Pipe in Pipe (ETH-PiP)

➢ Active heating technology for flow assurance

➢ Heat produced by Joule effect in heating cables

➢ System based on pipe-in-pipe technology equipped with heating cables

➢ System can be seen as a long heating/transmission line with load distributed along a pipeline

➢ Challenge of electrical modelling (a long load with distributed parameters and permanent short 
circuit at the end)

➢ Influence on modelling accuracy (distributed model of ETH cable required for computation)



Faults in Power Systems
Why do we need electrical protection?

➢ In normal operation (healthy system condition) all parameters 
are within safety limits

➢ In a fault case (e.g., short circuit or insulation deterioration)  
some physical parameters are out of safety limits:

• the current can be higher than nominal value,

• the voltage can be below/over the nominal value,

• the temperature over the nominal value,

• the load impedance out of the range 

o impedance lower than nominal → insulation deterioration or short-circuit

o impedance higher than nominal → break of electric path continuity

Nominal operation

Fault case (overcurrent)



General Role of Protection in Power Systems
Why do we need electrical protection?

➢ Consequences of system operation in a fault condition:

• Risk of explosion/destruction of system components

• Risk of a fault propagation to other system components

• Risk for health and life

➢ Solution → Electrical Protection system

• Permanent monitoring of entire system conditions

• In the case of fault detection:

o Faulty part of a system is turned-off

o Healthy part of system can be still in a power-on condition

source: Electrical Engineering Portal

• A fault can occur due to number of 
reasons, not all are predictable.

• Electrical protection does not protect 
power system against fault appearance. 

• Electrical protection protects the power 
system against long-term consequences 
of fault and separates faulty part from 
healthy part of a system.

https://electrical-engineering-portal.com/substation-fire-protection


ETH-PiP Protection Challenges

➢ Typically, in power system fault amplitudes are much 
higher than a nominal current level

➢ Fault current amplitudes are much lower for ETH 
system than usually expected in a power system

➢ For ETH system fault current amplitude decreases 
close to the level of nominal current if the fault is 
located beyond approx. 60% of the pipeline length

Voltage current profile

Fault currents for ETH-PiP power system

Consequence:
challenges for protection 

of ETH-PiP system 



Examples of Protection Functions Applicable to 
the ETH-PiP System

➢ Overvoltage / Undervoltage protection

➢ Overcurrent protection

➢ Phase unbalance protection

➢ Impedance (distance) protection

➢ Neutral overvoltage protection

➢ Neutral overcurrent protection

➢ Directional overcurrent protection

➢ Thermal protection

➢ Insulation Monitoring



Overvoltage/Undervoltage Protection

➢ The voltage level (phase-phase and phase-ground) is continuously monitored

➢ Normal operation: the voltage is at nominal level (it may vary within assumed margin)

➢ Overvoltage fault: If the voltage exceeds acceptable limits the appropriate action is initiated

➢ Undervoltage fault: If the voltage is below acceptable limits the appropriate action is initiated
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Overcurrent Protection

➢ The current level (in each phase) is continuously monitored

➢ Normal operation: the current is no higher than nominal level (it may vary depending on the load 
conditions)

➢ Overcurrent fault: If the current exceeds acceptable limits the appropriate action is initiated
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Phase Unbalance Protection

➢ The current amplitudes and phase shifting (in each phase) is continuously monitored

➢ Normal operation: current amplitudes similar for each phase & phase shifting is ~120°

➢ Unbalance fault: If unbalance of current amplitudes or phase shifting exceed acceptable limits the 
appropriate action is initiated



Impedance (distance) Protection

➢ Impedance vector is continuously monitored (based on voltages and current waveforms)

➢ Normal operation: impedance vector resides within the nominal zone 

➢ Impedance fault: If impedance vector leaves the nominal zone the appropriate action is initiated
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Voltage and Current Symmetrical Components

➢ Symmetrical components: three-phase system in normal and abnormal condition can be described 
by three phasors’ sequences: direct component (or positive sequence), inverse components (or 
negative sequence) and zero component (or homopolar sequence)

➢ Positive sequence – the natural set of phasors that can be expected in an ideal system.

➢ Negative sequence – the balanced three phasors with reversed order

➢ Zero sequence – balanced three phasors having the same phase angles
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Neutral Overvoltage Protection

➢ Zero sequence of voltage is continuously monitored (based of phase voltages)

➢ Normal operation: zero seq. value is very close to „0” (for perfectly symmetrical system is  exactly „0”)

➢ Neutral overvoltage fault: fault causes voltage imbalance – zero seq. is much higher than „0”- this fact is 
detected, and the appropriate action is initiated
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Neutral Overcurrent Protection

➢ Zero sequence current is continuously monitored (based of phase currents)

➢ Normal operation: zero seq. value is very close to „0” (for perfectly symmetrical system is  exactly „0”)

➢ Neutral overcurrent fault: fault causes imbalance of phase currents – zero seq. is much higher than „0”-
this fact is detected, and the appropriate action is initiated

t

i0(t)

zero-sequence 

current limit

no trip trip

t < tdel t = tdel



Directional Overcurrent Protection

➢ Phase voltages and currents are continuously monitored

➢ Normal operation: the phase shift between voltage and current phasors resides within nominal zone

➢ Directional overcurrent fault: the phase shift between voltage and current phasors changes the angle 
(the energy flow direction is reversed – it flows from the entire system to the faulty place) – in the case 
of detection the appropriate action is initiated
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Thermal Protection

➢ Temperature of sensitive system components (e.g., transformer) is continuously monitored

➢ Normal operation: temperature is below the limit

➢ Thermal fault: if temperature across the limit the appropriate action is initiated
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Insulation Monitoring
Implemented in form of an Insulation Monitoring Device (IMD)

➢ IMD is dedicated for use in ungrounded (isolated) systems – it injects the voltage signal to the 
neutral point of a transformer and monitors the grounding current

➢ Normal operation: the grounding current is below detection level (~nanoamperes)

➢ Insulation fault: the current is significantly higher (hundreds of milliamperes)
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Key Requirements in the Protection of ETH-PiP 

➢ Selectivity: the reaction to faults shall occur only in the monitored and protected part of electrical 
system (in ETH-PiP selectivity highly depends on system topology)

➢ Speed of reaction: as short as possible, but with time reservation on the fault confirmation (in ETH-
PiP speed of reaction highly depends on implemented protection functions)

➢ Reliability: the protection system shall consistently detect over a wide range of operating conditions, 
while minimizing false calls, (in ETH-PiP reliability highly depends on protection functions settings)

➢ Sensitivity: the absolute amount of change that can be detected by the protection system shall be as 
small as possible (in ETH-PiP sensitivity highly depends on a fault type and fault location)



Key Engineering Steps in ETH-PiP Protection 
Design

➢ Early-stage Evaluation: identify and analyze relevant fault scenarios through power system 

analyses.

➢ Definition of Electrical Protection Strategy: address identified scenarios and comply with 

relevant regulations.

➢ Selection of Protection Functions: select set of protection functions to cover all potential fault 

scenarios and define associated settings.

➢ Verify: through dedicated power system analyses as well as in field during commissioning.



Conclusions

➢ The electrical protection system is a key component of any ETH-PiP application. 

➢ Is protection system preventing occurrence of faults?
o NO - the role of protection system is to detect faults, isolate affected part and allow rest of the system to 

continue operating

➢ Can we use one super protection function to cover all faults?
o NO - due to the specific ETH-PIP topology, the protection strategy cannot be based on a single monitored 

parameter but shall rely on the monitoring of various ones.

➢ Should we implement all possible protection functions in each ETH-PiP project?
o NO - the protection system should cover real condition of the ETH – PiP system operation

➢ How to approach electrical protection system dedicated for the ETH-PiP?
o For each ETH-PIP application a project specific protection strategy shall be defined. 
o The protection strategy should cover selection of protection functions, selection of relays and the auxiliary 

equipment, settings of protection devices etc.

➢ TechnipFMC ensures that power system protection requirements for our heating solutions are met to the highest 
standard
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