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Flow Assurance Problems for Subsea Pipelines
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Electrically Trace Heated Pipe in Pipe (ETH-PiP)

Active heating technology for flow assurance
Heat produced by Joule effect in heating cables
System based on pipe-in-pipe technology equipped with heating cables

System can be seen as a long heating/transmission line with load distributed along a pipeline
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Challenge of electrical modelling (a long load with distributed parameters and permanent short
circuit at the end)
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Influence on modelling accuracy (distributed model of ETH cable required for computation)
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Faults in Power Systems

Why do we need electrical protection? Nominal operation

» In normal operation (healthy system condition) all parameters
are within safety limits

» In afault case (e.g., short circuit or insulation deterioration)
some physical parameters are out of safety limits:

e the current can be higher than nominal value,

Fault case (overcurrent)

* the voltage can be below/over the nominal value,

* the temperature over the nominal value,

-

* the load impedance out of the range
o impedance lower than nominal = insulation deterioration or short-circuit

o impedance higher than nominal - break of electric path continuity
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General Role of Protection in Power Systems

Why do we need electrical protection?

» Consequences of system operation in a fault condition:

* Risk of explosion/destruction of system components
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source: Electrical Enineering Portal

* Risk of a fault propagation to other system components
* Risk for health and life

e A fault can occur due to number of

» Solution - Electrical Protection system

* Permanent monitoring of entire system conditions

* |In the case of fault detection:

o Faulty part of a system is turned-off

o Healthy part of system can be still in a power-on condition
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https://electrical-engineering-portal.com/substation-fire-protection

ETH-PiP Protection Challenges

Voltage current profile
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Examples of Protection Functions Applicable to
the ETH-PiIP System

Overvoltage / Undervoltage protection
Overcurrent protection

Phase unbalance protection
Impedance (distance) protection
Neutral overvoltage protection
Neutral overcurrent protection
Directional overcurrent protection

Thermal protection
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Insulation Monitoring
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Overvoltage/Undervoltage Protection

The voltage level (phase-phase and phase-ground) is continuously monitored

Overvoltage fault: If the voltage exceeds acceptable limits the appropriate action is initiated

>
» Normal operation: the voltage is at nominal level (it may vary within assumed margin)
>
>

Undervoltage fault: If the voltage is below acceptable limits the appropriate action is initiated
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Overcurrent Protection

A\

The current level (in each phase) is continuously monitored

» Normal operation: the current is no higher than nominal level (it may vary depending on the load
conditions)

» Overcurrent fault: If the current exceeds acceptable limits the appropriate action is initiated
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Phase Unbalance Protection

A\

The current amplitudes and phase shifting (in each phase) is continuously monitored

A\

Normal operation: current amplitudes similar for each phase & phase shifting is ~120°

» Unbalance fault: If unbalance of current amplitudes or phase shifting exceed acceptable limits the
appropriate action is initiated
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Impedance (distance) Protection

» Impedance vector is continuously monitored (based on voltages and current waveforms)

» Normal operation: impedance vector resides within the nominal zone

» Impedance fault: If impedance vector leaves the nominal zone the appropriate action is initiated

no trip trip
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Voltage and Current Symmetrical Components

» Symmetrical components: three-phase system in normal and abnormal condition can be described
by three phasors’ sequences: direct component (or positive sequence), inverse components (or
negative sequence) and zero component (or homopolar sequence)

» Positive sequence — the natural set of phasors that can be expected in an ideal system.
Negative sequence — the balanced three phasors with reversed order
» Zero sequence — balanced three phasors having the same phase angles
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Neutral Overvoltage Protection

A\

Zero sequence of voltage is continuously monitored (based of phase voltages)

A\

Normal operation: zero seq. value is very close to ,,0” (for perfectly symmetrical system is exactly ,0”)

» Neutral overvoltage fault: fault causes voltage imbalance — zero seq. is much higher than ,0”- this fact is
detected, and the appropriate action is initiated
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Neutral Overcurrent Protection

A\

Zero sequence current is continuously monitored (based of phase currents)

A\

Normal operation: zero seq. value is very close to ,,0” (for perfectly symmetrical system is exactly ,0”)

» Neutral overcurrent fault: fault causes imbalance of phase currents — zero seq. is much higher than ,0”-
this fact is detected, and the appropriate action is initiated
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Directional Overcurrent Protection

» Phase voltages and currents are continuously monitored

Normal operation: the phase shift between voltage and current phasors resides within nominal zone

A\

» Directional overcurrent fault: the phase shift between voltage and current phasors changes the angle
(the energy flow direction is reversed — it flows from the entire system to the faulty place) —in the case
of detection the appropriate action is initiated
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Thermal Protection

» Temperature of sensitive system components (e.g., transformer) is continuously monitored

» Normal operation: temperature is below the limit

» Thermal fault: if temperature across the limit the appropriate action is initiated
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Insulation Monitoring

Implemented in form of an Insulation Monitoring Device (IMD)

» IMD is dedicated for use in ungrounded (isolated) systems — it injects the voltage signal to the
neutral point of a transformer and monitors the grounding current

» Normal operation: the grounding current is below detection level (“nanoamperes)

» Insulation fault: the current is significantly higher (hundreds of milliamperes)

L1 Step-down transformer

L2
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Key Requirements in the Protection of ETH-PiP

» Selectivity: the reaction to faults shall occur only in the monitored and protected part of electrical
system (in ETH-PiP selectivity highly depends on system topology)

» Speed of reaction: as short as possible, but with time reservation on the fault confirmation (in ETH-
PiP speed of reaction highly depends on implemented protection functions)

» Reliability: the protection system shall consistently detect over a wide range of operating conditions,
while minimizing false calls, (in ETH-PiP reliability highly depends on protection functions settings)

» Sensitivity: the absolute amount of change that can be detected by the protection system shall be as
small as possible (in ETH-PiP sensitivity highly depends on a fault type and fault location)
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Key Engineering Steps in ETH-PiP Protection
Design

» Early-stage Evaluation: identify and analyze relevant fault scenarios through power system

analyses.

» Definition of Electrical Protection Strategy: address identified scenarios and comply with

relevant regulations.

» Selection of Protection Functions: select set of protection functions to cover all potential fault

scenarios and define associated settings.

» Verify: through dedicated power system analyses as well as in field during commissioning.
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Conclusions

»  The electrical protection system is a key component of any ETH-PiP application.

» Is protection system preventing occurrence of faults?

o NO - the role of protection system is to detect faults, isolate affected part and allow rest of the system to
continue operating

»  Can we use one super protection function to cover all faults?

o NO - due to the specific ETH-PIP topology, the protection strategy cannot be based on a single monitored
parameter but shall rely on the monitoring of various ones.

»  Should we implement all possible protection functions in each ETH-PiP project?
o NO - the protection system should cover real condition of the ETH — PiP system operation

»  How to approach electrical protection system dedicated for the ETH-PiP?
o For each ETH-PIP application a project specific protection strategy shall be defined.

o The protection strategfy should cover selection of protection functions, selection of relays and the auxiliary
equipment, settings of protection devices etc.

> Techgip(I;MC ensures that power system protection requirements for our heating solutions are met to the highest
standar
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